
Holistic Software Engineering Education Based on a Humanitarian
Open Source Project

Heidi J. C. Ellis, Ralph A. Morelli,
Trishan R. deLanerolle

Trinity College
{heidi.ellis, ralph.morelli,

trishan.delanerolle}@trincoll.edu

Gregory W. Hislop
Drexel University
hislop@drexel.edu

Abstract

For the past year, Trinity College has utilized Sahana, a free and open source disaster
management system, as a foundation to teach software engineering. The goals of the use of
the Sahana project are threefold: to provide students with a real-world software engineering
experience; to introduce students to the open-source development model; and to attract a
wider variety of students into computing due to the real-world and humanitarian nature of the
Sahana project. This paper discusses an approach for using open source software as a
foundation to teach software engineering in a Liberal Arts environment by involving students
in an ongoing, real-world project from the very beginning, allowing students with a wide
range of backgrounds to participate. Results of a learning survey of a small group of students
who have participated in the project are presented. The paper also provides guidance to
others contemplating incorporating open source projects into their software engineering
courses or curriculum.

1. Introduction

The need for software engineering students to gain real-world experience during their
academic studies is well known [5], [15]. The trend of software production towards globally
distributed development that increasingly uses open-source components and components off
the shelf (COTS) highlights the need for students to be prepared to work in a distributed
environment [6]. The open-source movement has been gaining momentum within the
software industry [13] and has been suggested as one way to provide students with industry
experience in an academic setting [12].

For the past year, Trinity College has been using Sahana [2], an open-source disaster
management software project, as the foundation for software engineering education. Trinity is
a competitive Liberal Arts college. Sahana, Sinhalese for relief, is a free and open-source
disaster management system (http://www.sahana.lk). It is a web-based tool that addresses the
information technology (IT) coordination problems that typically occur in trying to recover
from a large-scale disaster. Sahana is part of an international project that began in Sri Lanka
following the 2004 Asian tsunami and has been deployed in a number of disasters, including
the 2005 earth quake in Pakistan and the 2006 mudslide in the Philippines. At Trinity,
undergraduate students are developing production-level software which has been incorporated
into the most recent Sahana release. The educational goals of the effort are: to provide
students with a real-world software engineering experience; to introduce students to the open-
source development model; and to attract a wider variety of students into computing.

1.1 Open Source Software in Software Engineering Education

Interest in open-source software is growing in the software education community. Many
institutions have adopted the use of open-source software such as Linux, PhP, Apache, and

others as application tools. However reports on the use of open-source software as a basis for
software engineering projects are just starting to emerge.

In one of the earliest efforts, Carrington and Kim describe a software design course that
uses an open-source project [3]. Student teams were required to evaluate and extend an open-
source software tool during the progress of the course. Similarly, Toth [16] discusses the use
of open source software tools as the basis for a capstone course. Toth describes a two-term
practicum where students evaluate existing software engineering tools, select a candidate tool
to enhance, and extend the functionality of the selected tool.

Allen, Cartwright and Reis [1] outline the use of open-source software as the basis for a
software engineering course intended to provide students with production-level development
experience. The course revolves around the enhancement of the Dr. Java tool, an integrated
software development environment for Java. Shockey and Cabrera [14] discuss an ongoing
education and research project at the Inter-American University of Puerto Rico which has led
to the creation of an open-source Java-based software development platform and center where
undergraduate students can gain experience in open source development.

Liu [10] presents an open-source software development process called Gradually Ripen
Open-source softWare (GROW) that is planned to be used in a project-based software course.
The goal is to have teams of students working simultaneously in various stages of
development on real-world projects. Unfortunately, no results of the application of the
GROW process have been reported.

The work described in this paper differs from those described above in two important
ways. First, many of the efforts focus on open source projects developed for an audience of
software developers whereas Sahana is humanitarian software, intended for use by non-profit
and non-governmental organizations. Second, the Sahana effort at Trinity College is taking
place in an open-source community that has an integrated mix of people, some of whom are
working on the project as volunteers and others for credit.

2. Sahana in software engineering education

There are several characteristics of the Sahana project that make it an ideal foundation
upon which to base software engineering education. The Sahana project is developed using
the open source LAMP architecture (Linux, Apache, MySQL, and PhP) and currently
contains over 70,000 lines of code. Therefore Sahana provides an existing application of
considerable size and complexity upon which education can be based.

Sahana is an ongoing project where software functionality is continually being expanded
and enhanced. By involving students in contributing to a production version of the Sahana
project, students are exposed to a real-world development process including requirements
definition, reviews, adherence to coding standards, formal testing, etc.

The Sahana core development team, located in Sri Lanka, is supported by a global
volunteer community of humanitarian consultants, emergency management experts and
developers, numbering in excess of 150. The distributed nature of the Sahana project provides
students with a real-world experience of dealing with a variety of developers and customers
spread around the world, personnel not typically found in the traditional academic
environment. Students must also become familiar with the distributed development tools.

The use of Sahana, or any disaster relief software, is characterized by high modifiability
demands on the software. Given the very unpredictable nature of disasters, the Sahana project
must be quickly and easily modified along defined axes (e.g., customization of volunteer
registration interface). The strong requirement for adaptive maintenance provides students
with the real-world experience of changing requirements.

2.1 Educational Approach

The general approach to using Sahana as a base for software engineering education is to
incorporate students with a range of backgrounds and experience into a real-world project
where each student contributes based on their knowledge and abilities. For instance, students
with less software engineering background may begin by eliciting requirements or updating
project documents while students with more extensive software background may start by
designing portions of an application. Small classes and independent studies are used to
provide individual attention and support the software engineering team experience.

Trinity began investigating the use of Sahana for software engineering education in
January 2006 through several independent study courses and summer internships as described
in [4]. The focus of the early work was on the development of a volunteer management (VM)
module for Sahana. During fall 2006, an independent study course was offered at Trinity in a
distributed format with participation by students from two other Liberal Arts colleges,
Wesleyan University and Connecticut College. Several other college-age individuals also
volunteered for a semester of effort without receiving course credit. The minimal background
for entry into the course was CS1 and students with a wide range of backgrounds took the
course. The course attracted a total of nine students with two each at Wesleyan University and
Connecticut College. Six of the students took the course for credit and three were volunteers.

The participants somewhat self-organized into teams and roles with some students working
on developing enhancements to Sahana and others serving as infrastructure support such as
project manager, resource coordinator and librarian. Students were allowed to identify their
own projects and students initiated three different efforts into enhancing Sahana.

The two students at Wesleyan University developed a hospital management module to
keep track of available medical facilities in the area of a disaster. The module enables users to
locate hospitals within a particular region and to manage the status of hospitals (e.g., number
of total beds, number of available beds, etc.). This project is ongoing as the students intend to
continue their efforts during the spring 2007 semester.

The two students at Connecticut College developed an extension to Sahana to allow the
bulk import of data into the Sahana missing-persons database. The application is intended to
allow an entire college or corporation to quickly and easily set up a missing persons registry
of everyone in their organization. Supported upload formats include LDAP, XML, and CSV.
This project was requested by the Connecticut College disaster planning group and is being
incorporated into the campus plan for disaster management.

Two Trinity students worked with Trinity’s Community Service and Civic Engagement
office to adapt the VM module to provide a customized interface that could be used to register
volunteers for a variety of community volunteer projects. The idea behind this project was to
make the VM interface more general and customizable to serve community organizations
working outside the domain of disaster management.

2.2 Process and Procedures

The course met one evening a week for 15 weeks using videoconferencing. Potential
enhancements to Sahana had not been identified before the start of the course and therefore
the first few weeks of the course were spent identifying projects. This somewhat slow start to
the course meant that more time was spent on the initial software engineering phases of
requirements and design.

The Sahana effort dictates coding standards, but does not provide any other documentation
standards. In addition, there is little in the way of prescribed development process other than
that used by the core team to approve additions. Therefore a series of project documents were
provided to students as research has shown that such scaffolding is beneficial for providing
structure for both the course and for the software development process used in the course [7].

All of the projects ran on the same schedule. After identifying a project, students
completed a software requirements specification (SRS) loosely based on the IEEE-830 [8]
and slightly modified from the work presented in [7]. Students were provided with an
example of the requirements specification developed for the VM module. During the sixth
week, students presented drafts of their requirements during class and any feedback was
incorporated into the final document which was submitted in the seventh week of class.

After an initial review and revision of the SRS, students went on to complete a software
design specification (SDS), loosely based on the IEEE-1016 [9] and modified from [7]. The
SDS template was explained in class and an example SDS from a non-Sahana application was
provided. During the 10th week in the semester, students presented drafts of their SDS
documents. Comments resulting from this informal review were incorporated and final
versions were submitted in week 11.

During the remaining four weeks in the semester, students focused on implementing their
designs and no further documentation was required. Students presented their projects to
faculty from all three schools as well as to members of the Sahana community and industry
representatives who attended the meeting via video conference.

Grading was done collaboratively by all participants in the effort. The SRS, SDS, and final
presentation were the only graded deliverables and all participants used a common rubric to
grade each team’s efforts. The high and low grades were eliminated and the grade for the
deliverable was calculated by averaging the remaining scores.

In addition to the documentation scaffolding, the course was also supported by a wiki
(http://www.cs.trincoll.edu/sahana_proj/wiki/Main_Page). Students were encouraged to
collaborate both within their team and across teams. The result was a true community effort in
creating a useful wiki which contains a set of examples, FAQs and a series of developer
guides. The Sahana core team found the documentation developed on the wiki to be so useful
that they included the new developer guide in their main documentation.

3. Software Engineering Learning

3.1 The Survey

An anonymous survey instrument was constructed to elicit student observations on their
learning during the fall 2006 semester. The survey contained four sections. The first section
asked for student background while the second section contained free-form questions
pertaining to student learning. The third portion of the survey asked students to rate their
learning about the software engineering topics from the SWEBOK based on a five-point
Likkert scale. The last portion of the survey asked students to indicate their satisfaction with
the course using a five-point Likkert scale using a variety of statements about the course.

3.2 Results and Observations

There were nine participants in the fall 2006 Sahana effort, few of whom had any formal
software engineering background. Of the five students who returned survey responses, all
were male, all had taken the course for credit, and all were either juniors or seniors. The
technical background ranged from two semesters of Java to strong PhP and MySQL
experience. Motivation for taking the course ranged from interest in Sahana to interest in
developing a web application. One student indicated an interest in working on a real-world
project: “I was excited to work on something that had the potential for real-world use, rather
than just class exercises.”

Students indicated that the primary knowledge gained from the course ranged from tools to
software design to software development process and working in a team. A student said: “As
I was working with others, I had to make considerations about other’s work and make it

compatible with mine.” The top roadblocks to student learning identified by students
included the steep learning curve for some aspect of the project, and technology blocks
including incomplete library documentation, lack of JavaScript skills, and difficult-to-trace
bugs. In answer to the question about how much students felt they learned about software
engineering, “a fair amount” was the common answer.

Table 1. Self-Assessment of Learning Based on SWEBOK Categories.

Table 1 shows the student self-assessment of learning based on the SWEBOK
categories. The results clearly show that students felt that they accomplished some
software engineering learning. In addition, most students felt that they learned an
appreciable amount about the early phases of software engineering including
requirements, design, and construction. As could be expected, these results reflect the
greater emphasis placed on these topics during the course. Similarly, students indicated
less learning occurring in the latter phases of development such as testing and
maintenance. It should also be noted that while a brief description of each of the terms
was included in the survey, some students may not have clearly understood the terms.

Table 2. Student satisfaction with the independent study.
Question Mean
21. I have a high level of interest in the course subject matter. 3.75
22. The subject matter of this course is highly relevant to my future career plans. 3.75
23. I have a high level of experience in the course subject matter. 2.50
24. I like the mix of theoretical learning combined with hands-on application of the
subject matter. 3.50
25. The pace of the course was too fast. 2.50
26. The pace of the course was too slow. 2.25
27. I am very satisfied with my learning experience in this course. 4.00
28. Overall, I am very satisfied with this course. 4.25

The results from part four of the survey on student satisfaction were mapped to
integers with one representing the “strongly disagree” answer and five corresponding to
the “strongly agree” answer. Table 2 shows the mean student responses. The slightly
positive responses to questions 21 and 22 indicate relatively high student interest in the
course. The below-average mean of the responses to questions 25 and 26 indicate that
students appeared to be satisfied with the pace of the course. The strong positive
responses to questions 27 and 28 indicate that students were very satisfied with their
learning. During the final presentation of their projects, students were asked about the
“best” thing that they had learned. The Connecticut College students said that the most
important things they learned were how to work in teams and the importance of
documentation. The Wesleyan team reported that they learned about how to understand
the project by reading code and project documents.

Topic None A Little
Bit

Some A Lot A Significant
Amount

Software Requirements 1 3 1
Software Design 2 1 2
Software Construction 1 1 3
Software Testing 3 2
Software Maintenance 2 2 1
Software Configuration Management 1 3
Software Engineering Management 1 1 2 1
Software Engineering Process 2 1 2
Software Engineering Tools and Methods 1 2 1 1
Software Quality 2 2 1

4. Discussion

Observation of students working on the Sahana project have yielded several findings
about student learning. One result that we have observed is that students quickly learn
about requirements. The first task students have is to understand the Sahana system and
then to determine boundaries of their particular project. During this process, students
learn about the negative impacts of incomplete or inadequate requirements documents.
One complication in eliciting requirements, also identified by McGrath [11], is the
difficulty in deciding on requirements with a distributed group of users with varying
and sometimes conflicting needs.

Once students have identified a project, they must then understand how their project
fits into the larger Sahana effort. During this process students learn design by
examining the existing structure of the Sahana system. While not perfect, the Sahana
system provides an example of solid design. In addition, examination of the existing
system highlights the coding standards used in Sahana.

Students gain an understanding of software quality through the use of periodic
reviews. All project documents are jointly reviewed by the class and feedback is
provided. In addition, students are motivated to test rigorously as professional
developers will be testing their code. They also have the further incentive of knowing
that if their code fails, the failure could have significant impact on human life.

The changeable nature of the Sahana project underscores the need for estimation, risk
assessment, and scheduling. The potential for change is very high and this requires
students to understand the impact of change and how to plan for change.

The instructors have observed that as students have gained more software
engineering knowledge and experience, their contributions have increased in volume
and quality. In addition, as student knowledge increases, they take on greater
responsibility for the project. In this manner, students grow in software engineering
experience and professionalism.

4.1 Benefits and Drawbacks

There are many benefits reaped by both students and instructors from working with
an open source humanitarian software. Benefits that result from the open source nature
of the project include increased industry contacts, professional maturation of students,
improved written communication skills, experience with system administration, and
exposure to management approaches [15]. Similarly, Toth notes benefits which include
having access to an existing project of significant size, high student motivation,
increased interaction with industry, and increased marketability of students [16].

We have observed all of these benefits in students who have worked on the Sahana
project. The benefits that students mention most are those related to real-world
experience and marketability. We have seen students more quickly mature as
professionals due to increased exposure to real-world conditions and increased
interaction with software professionals.

Another benefit obtained from an open source project that we have observed is that
software engineering principles are conveyed by experience rather than by the
instructor’s voice. While the instructor introduces software engineering precepts, the
principles themselves are embedded within the project and make themselves evident to
the students as they go through the planning and development process. As a result, the
instructor is more of a guide and students gain a broad understanding of the precepts.

In addition to the open source nature of the Sahana project, the humanitarian aspect
of Sahana also provides some benefits to students. The involvement of professionals,

both as customers and as fellow developers, provides valuable role models for students.
Students also benefit from increased professional contacts from a wider range of
organizations as well as improved team interaction. One of our students has worked
side-by-side with professionals from Google, Accenture, IBM, and the Red Cross.

While there are many advantages to using humanitarian open source software as a
base for software engineering education, there are also several drawbacks. Our
experience is based on a few small teams supported by two instructors and another
Sahana volunteer. Based on our experience, we expect that managing a project with a
large number of students could be unwieldy if students bring a wide variety of
backgrounds to the course.

A second drawback to our approach is difficulty in grading due to the different
background and experiences that students bring to the course. Since students make
different contributions to the project, there is no uniform metric that can be applied to
all students. A grading drawback in the peer-grading approach was that students tended
not to be as constructively critical of each other as we might have hoped.

Another significant drawback resulting from students contributing to the production
version of Sahana is the case where the project is deployed for use in a disaster in the
middle of a semester. Such an event would require that some current development cease
and effort be put into supporting the disaster (i.e., customizing and maintaining the
software for the disaster). Such a situation requires flexibility on the part of the
instructor to change the direction of the course in mid-stream.

4.2 Guidance for Using Open Source Projects in Software Engineering Education

The use of an open source project as a base for software engineering education has
many advantages, but can also have disadvantages including lack of documentation,
inconsistent coding standards, and inconsistent quality. Therefore, we suggest that such
efforts start small in order to allow instructors time to understand the project as well as
to understand the approaches that best merge open source development and academic
requirements. Indeed, Toth [16] notes the use of open source software in an academic
course requires an investment of instructor time. Therefore a small number of small
teams would provide an ideal starting point.

A second guideline for using open source software in education is to build
considerable infrastructure to support student learning. This infrastructure may take the
form of process as well as a scaffolding of documentation. A development process,
perhaps agile, which allows for change during development is necessary for providing
structure to project development and student learning. This process should be
accompanied by a framework of documentation and communication tools to provide
guidance to students.

Due to the flexible nature of open source software and the very changeable nature of
humanitarian software, student projects should be well bounded and requirements
clearly prioritized. This allows the changes that inevitably occur to be evaluated and
adjustments in development to be more easily made throughout the semester.

If the educational experience involves students with varying backgrounds, differing
metrics and grading approaches should be planned for the range of students expected in
the course. In addition, students may be fulfilling vastly different roles in a contribution
to a project and a set of metrics for each of these roles should be established.

Lastly, the creation of a community for development is critical when using open
source software as a foundation for software engineering education. The early
establishment of a group of professionals, users, and students provides students with

guidance throughout development and a community to which to ask questions, as well
as serving as role models.

5. Conclusion and Future Directions

Our experience in using the Sahana project as a base for software engineering
education has shown that a real-world open source project can successfully support a
range of software engineering learning. We have observed substantial benefits to
students including very high motivation, hands-on experience with multiple aspects of
software engineering, professional growth, and contacts gained by students through
interacting with the Sahana community.

In the future, we plan to continue the use of Sahana and other open source
humanitarian software as a foundation for software engineering education. A “Topics in
Application Programming” course is being offered in spring 2007 which will use
humanitarian open source software as a starting point for development. The course has
an enrollment of 14 students at Trinity College and an additional four to five students at
both Wesleyan University and Connecticut College. In addition, a summer humanitarian
open-source software development institute is planned for summer 2007. Six to eight
students from the three colleges will participate in team projects under the supervision
of a combination of faculty, industry representatives and social service participants.

6. References

[1] Allen, E., R. Cartwright and C. Reis, “Production programming in the classroom”, SIGCSE 2003, pp, 89-93.

[2] Apikul, C., “Managing Disasters – Sahana”, The International Open Source Network, retrieved from

http://www.iosn.net/foss/humanitarian/projects/sahana/ on January 11, 2007.

[3] Carrington, D., and S.K. Kim, “Teaching software design with open source software”, 33rd Annual

ASEE/IEEE Frontiers in Education Conference, 2003, pp. 9-14.

[4] Ellis, H.J.C., Morelli, R.A., de Lanerolle, T., Damon, J., and J. Raye, “Can Humanitarian Open-Source

Software Development Draw New Students to CS?”, SIGCSE 2007, 2007.

[5] Fernandez, J.D., M. Garcia, D. Camacho, and A. Evans, “Software engineering industry experience: the key to

success”, Journal of Computing Sciences in Colleges, Vol. 21 , No. 4, 2006, pp. 230-236.

[6] Hawthorne, M.J. and D.E. Perry, “Software engineering education in the era of outsourcing, distributed

development, and open source software: Challenges and opportunities”, Proceedings of the 27th international

conference on Software engineering, 2005, pp. 643-644.

[7] Hislop, G.W., “Scaffolding Student Work in Capstone Design Courses”, 36th Annual ASEE/IEEE Frontiers in

Education Conference, 2006, pp. T1E 1-4.

[8] IEEE-SA Standards Board, "IEEE Recommended Practice for Software Requirements Specifications", New

York: The Institute of Electrical and Electronics Engineers, Inc. 1998.

[9] IEEE-SA Standards Board, " IEEE Recommended Practice for Software Design Descriptions", New York: The

Institute of Electrical and Electronics Engineers, Inc. 1998.

[10] Liu, C., “Enriching software engineering courses with service-learning projects and the open-source

approach”, Proceedings of the 27th international conference on Software engineering, 2005, pp. 613–614.

[11] McGrath, O., “Balancing act: community and local requirements in an open source development process”,

Proceedings of the 34th annual ACM SIGUCCS conference on User services, 2006, pp. 240–244.

[12] Patterson, D., President's Letter, CACM, Vol. 49, No. 3, 2006, pp. 27-30.

[13] Samuelson, P., “IBM's pragmatic embrace of open source,” CACM, Vol. 49, No. 10, 2006, pp. 21 – 25.

[14] Shockey, K. and P. Cabrera., “Using open source to enhance learning”, Proc. of 6th ITHET, 2005, pp. 7-12.

[15] Spinellis, D., “Open Source and Professional Advancement”, IEEE Software, Vol. 23, No. 5, 2006, p. 70.

[16] Toth, K., “Experiences with open source software engineering tools”, IEEE Software, vol. 23, no. 6, 2006, pp.

44-52.

